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A Collisional-Radiative Average Atom Model for Hot Plasmas.
Balazs F. Rozsnyai
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, California 94550.

Abstract.

A collisional-radiative “average atom” (AA) model is presented for the calculation of opacities of hot
plasmas not in the condition of local thermodynamic equilibrium (LTE). The electron impact and
radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key
element of the model is the photon escape probability which at present is calculated for a semi infinite
slab. The Fermu statistics renders the rate equations for the AA level occupancies nonlinear, which
requires iterations until the steady state AA level occupancies are found. Detailed electronic
configurations are built into the model after the seif-consistent non-LTE AA state is found. The model
shows a continuous transition from the non-LTE to the LTE state depending on the optical thickness of
the plasma.

I. Introduction.

Models for calculating equation of state (EOS) data and photoabsorption cross sections of hot plasmas in
the state of local thermodynamic equilibrium (LTE) have been around for some time.'” Under LTE
conditions the Fermi or Boltzmann statistics defines the distribution of the quantum mechanical states of
the radiating ions thus greatly facilitating the theoretical development of the model. The condition of LTE
is assured when the plasma is completely dominated by collisions and/or when the radiation field
surrounding the plasma is Planckian. In the absence of the above the statistical distribution of the different
ionic states can be obtained only by solving the relevant rate equations involving the ions and photons.
Previous papers addressing the subject of ionization balance in terms of the steady state solutions of the
rate equations used either semi-classical and parametrized atomic data,'® or hydrogenic approximation or
isolated atomic data for the rate constants.'''* The problem of obtaining a set of rate equations for
medium or high-Z elements in dense plasmas is complicated by a number of factors; First, the number of
quantum states of the different many-electron configurations can be enormous. Second, even when data
of these quantum states are available for isolated atoms and ions, the plasma electrons may sufficiently
perturb those states to the degree that they may be useless. Third, the non-LTE photon distribution has to
be coupled self-consistently to the statistical distribution of the many-electron ionic states. To overcome
the first and second difficulty we propose a set of rate equations using the AA approach, which treats the
plasma by one representative “average atom” which subsequently can be augmented with the details of
the physically significant many-electron configurations. We will address the third problem with some
limitations, as it will be clear later. The AA model under LTE conditions is described in Refs. 4-6 and in
references given there. The AA approach to the rate equations is complicated by the fact that the Fermi
statistics renders the rate equations nonlinear in terms of the AA level populations. For this reason at
present we restrict our considerations to the steady-state solution of the rate equations and will not
consider time-dependent problems. For the present we restrict ourselves to the case when the photon
distribution is derived from a Planckian field where the energy dependent photon density is reduced by
the probability of photon escape. This photon escape probability is coupled self-consistently to the

quantum states of the AA atom. In Section II we present the basics of the model and in Section Il we
present computational results.



IL Description Of The Model.

A. Rate constants.

In this sub-section we consider the rate constants which enter the rate equations. We consider excitations,
deexcitations, ionizations by electron and photon impact. We assume that the electron thermalization time
is short enough to assume a Maxwellian (or Fermi-Dirac) distribution for the free electrons, thus an
electron temperature for the free states is well defined. Also we restrict ourselves to dipole-allowed
transitions. The cross sections which determine the rate constants are approximations of precise
quantum-mechanical calculations and were used before to calculate electron impact widths. '®

We start with the excitation cross section form a bound AA level i to an other j by electron impact
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where AEij is the excitation energy, fij is the dipole oscillator strength normalized to one electron

occupancy of the initial state i and computed from the AA wave functions, X =€ / AEU- with € as the

energy of the incident electron and the superscript ¢ indicates “collision”. Equation (II. 1) was obtained
by a series of numerical fits to R matrix calculations for dipole allowed transitions in medium Z atoms and
ions. The general expression for the excitation rate is given by
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where v stands for the velocity. In the case of Maxwellian distribution the number of free electrons
between € and e+de is given by
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where kT stands for the temperature (in energy units) of the free electron gas with,k denoting
Boltzmann’s constant and p for the total free electron density. Using v=c(2&/mc?)"? we obtain
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where we factored out the dipole oscillator strength. The integral in Eq.(4) is given by
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The last relation is due to the fact that the de-excitation cross section is the same as (II. 1) except the
In(x) term has to be replaced by In(x+1).
We calculate the electron impact ionization rates fro the cross section
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where € and ¢; stand for the energy of the incident electron and for the eigenenergy of the bound level I,
respectively and the subscript ¢ indicates the transition to a continuum state. Equation (II. 7) is
analogous to Eq.(IL. 1) and apart from the exponential term to Lotz’s cross section for electron impact

ionization.'” For the best fit to agree with more sophisticated calculations we use K=2.27. The ionization
rate constant is given by

23/2

RS =Ke* PE——ITE (kT)3/2 J-[l exp(-.3x)|Inxexp(-x|;/kT)dx (sec’) (L 8).

The condition of detailed balance relates the three-body recombination to Eq.(II. 8) by

RG =exp[(n—¢€;)/ kT|R, (IL. 9)
where p is the Fermi level of the free electron gas. Since exp(WwkT) is proportional to p and so is Ricc ,
Eq.(IL. 10) indeed represents three-body recombination. The condition N;Rf, = (g; — N;)R§
leads to the Fermi statistics where N; stands for the population of level i and g; for its statistical weight.

We account for the dielectronic recombination and its inverse by the Auger matrix elements
A ;'i'°= Auger process, an electron from level m goes to continuum while an other from level j fills a
hole state in I. In the AA approximation this matrix element is given by'®
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where A =1;+1; +1p, +1. +1 and the R-s stand for the usual Slater integrals. Also, in Eq.(II. 10a)

the a-s stand for the availability of the states i and c. The symbols n and | stand for the principal and
angular momentum quantum numbers, respectively. It should be noted that Eqs.(II. 10a)-(II. 10d) have
nothing to do with the thermal state of the plasma. They are strictly the results of taking the Auger matrix
elements between averaged J states.

In the case of photoabsorption we consider the photon escape probability due to the finite optical
thickness. The concept of photon escape probability was used in previous work in connection with

line transfers.'>' In this work we calculate the photon escape probability form the total self-consistent
photoabsorption cross section, which includes the line profiles together with photoinization and inverse
bremsstrahlung. We assume that the radiating ion is situated in a semi infinite slab at a distance d away
from the edge of the slab. For this case it is easy to show that the photon escape probability is given by

P(hw) = exp(—x) — xE,(x) (IL 11)
1
c(hw)D
with o and D as the photoabsorption cross section and ion density of the plasma. Actually, we will use
the photcn confinement probability which is 1-P. .

Next, we consider the radiative transitions. For a spontaneous downward transition we have Einstein’s
transition probability

where x=d/1; 1=
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For an induced transition we use the general form

By =c¢ Icij(hm)N(hm)d(hm) (sec™) (IL. 13)

where N(2®)d(%m) is the number of photons /cc in the energy interval i @ and /i o+d(7 ®).
For the absorption cross section we have
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where b;;(72() is the line shape function of the transition. Assuming a Dirac § function for the line
shape we have
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For a Planckian radiation field we have
2
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We mimic the finite optical thickness with a photon distribution N(fi0)= Np(hw) P.(f®) and
obtain
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For the downward j-i transition the combined spontaneous and induced rates give
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For the photoionization rate from a bound state m to the continuum ¢ we have
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where P, stands for the frequency dependent photon confinement factor and G, . is the

photoionization cross section of the level m normalized to one electron occupancy. It should be noted

that Eq.(1L. 19) includes the induced downward c—>m transition. The inverse radiative recombination is
given by

R, =exp[(n—&,)/ kTR (IL. 20)

where R, refers to the photoionization rate in the optically thick case when P.=1 and reflects the
principle of detailed balance when the free electrons follow the Fermi statistics.



B. Rate equations.

First, we summarize the rate constants which drive the rate equations;
ank = excitation (deexcitation from level m to level k by electron impact.
Ri, = the same for radiative transitions (spontaneous and induced combined)

R‘,:nc = electron impact ionization from level m to continuum.

RS, = expl(p —€5) / KTIRS, (=the reverse, three body recombination (I 21)

I = photoionization

R, = expl(n — €) / KTIR, .= the reverse, radiative recombination (1. 22)

A 3‘: “= Auger process, an electron from level m goes to continuum while an other from level j fills a
hole state in 1.

A" = the inverse.

N = the number of free electrons per AA.

All rate constants are normalized to one electron occupancies of the bound levels and they do not

include the availability of the final state. Assuming that the number of bound AA levels is finite the rate
equations are given by
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All summations go over the bound level indices. It is easy to see that Eqs.(II. 23) and (II. 24) satisfy the
particle conservation

dN m ., -dN—C =0 because

dt dt
m

the sums with respect to m in | and 4 cancel out, the sum of 2 with respect to m cancels out 7, the same
for 3 and 8, 5 and 9 and 6 and 10. The above is simply the consequence of particle number conservation.

dN
In a steady state solution we must have —dt—c =0 separately, which means that the sums 7 8 9 and 10

have to add up to zero. This last condition defines the steady state ionization balance, LTE or not.
Next, we introduce some new quantities from the triple sums 9 and 10.

Let ZZ N (g - N)A™=K 1 1L 258)
i) i
and ZZ Ni(g; - N)A™-expl(n— 1)/ kTK e (T 25b).
i i
Using the relationships (II. 21) and (II. 22) for the detailed balance and then Eq.(II. 24) for the
steady state case has the general form

dN
dtc =Z {(Rsn_ch + rx;\.c + Km.c)Nm’exp[u' - 8m) / kT] (gm - Nm)x
m

(RicNe + R + Ko )} =0 (II. 26).

Equation (I1. 26) is generally valid for LTE or non-LTE ionization balance. Next, we take the
approximation that the individual m terms in Eq.(11. 269) are zero, which we will call as the “one level in
continuum” (OLC) approximation. The name is justified by observing that the OLC approximation is

exact when there is only one bound level embedded in the continuum. The OLC approximation yields for
the occupancy of the level m
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In the optically thick case when P.=1 A =1 and Eq.(IL. 27) yields the Fermi statistics. N , the number
of free electrons per AA is obviously Z- the sum of bound electrons.

The individual occupancies of the bound levels given by Eqs.(I1. 27) and (II. 28) are not exact, but their
sum satisties Eq. (II. 26), therefore we adopt it as a reasonable approximation for the ionization state.
This facilitates the iteration procedure of solving Eq.(1l. 23) by determining N. from Eqgs.(11. 27) and
(IT. 28) first and solving Eq.(II. 23) for the bound state populations subsequently. In fact, the self-

consistent solutions of Eqgs.(11. 23), (11. 27) and (11. 28) together with Eq.(11. 11) for the photon escape
probability involve a hierarchy of iterations that we outline in the next Section.

III. Computational Results.

The rate equations (I1. 23) and (1. 24) in terms of the bound level occupancies and N, are cubic, which
necessitates the application of iteration schemes for the solution. In addition, all solutions must be also
self-consistent with the frequency dependent photon escape probability. In order to make the whole
problem computationally tractable we adopted the following iteration scheme:

1. We start from the self-consistent LTE problem as described in Refs. 6 and 8 and compute all the rate
constants from the LTE wave functions and from the LTE photon escape probability.

2 . Next we obtain the first iteration value for N, in the OLC approximation using Eqgs.(11. 27) and
(1I. 28).

3. Next we solve Eq.(II. 23) for the bound level populations by successive iterations where the
availability factors and the factors(g.-Nu) for the n-th iteration are taken from the n-1th iteration and
we iterate until the values of Ny, converge. At this point the AA problem is solved in first iteration.

4. In order to obtain realistic photoabsorption cross sections and photon escape probabilities one must
go beyond the AA model and build into the model the effect of “detailed configuration accounting”
(DCA) due to the many-electron configurations. This necessitates to calculate the statistical

distribution of the numerous DCA states which in a system not in LTE is a serious problem in itself.

We solve this problem by calculating an “equivalent LTE temperature” kT, , which after Busquet™
is defined as the temperature which under LTE condition yields the same value for N as the non-
LTE problem. We also calculate an equivalent Fermi level p.q which together with kT, is used to
calculate an equivalent Boltzmann distribution of the many-electron DCA states. We proceed to
compute the photoabsorption from these DCA states as described in Ref. 8.



5. Having obtained the non-LTE photoabsorption cross section and non-LTE populations in this
manner in the first iteration we go back to point 1 and iterate until convergency is reached. In
the calculations presented here convergency was reached usually after 4 or 5 iterations.

All the above iterations make the calculations rather lengthy compared to the LTE problems.

We present two sets of calculations, one for praseodymium (Z=59) at kT=1KeV and at 0.1g/cc density
and one for germanium (Z=32) at kT=0.5KeV and at 0.01g/cc density. Calculations for the first case for
an optically thin plasma and using the method of “equivalent LTE temperature” were published in Ref.
18, the second was a study case at the WorkOp-1I1:94 conference’ where the author presented non-LTE
corona equilibrium opacities obtained from level populations predicted by the LASNEX code of the
Lawrence Livermore National Laboratory. In this report we present calculations for various optical
thicknesses and we show the resuits converge, as expected, to the LTE case when the plasma gradually
becomes optically thick. We label the parameter for characterizing the optical thickness by xg which is

the distance of the central ion from the edge of the semi-infinite slab divided by the LTE Rosseland mean
length L .

The conditions are summarized in Table I where we give the parameters X in column 1, the equivalent
LTE temperatures in column 2, the numbers of free electrons per AA in column 3 and the degeneracy
parameters of the free electron gas wWkT and py/kTe, in columns 4 and 5, respectively.

The calculations for praseodymium are shown in Figs. 1-7, and also in Figs. 12 and 13. Figure 1 shows
the self consistent photon confinement factors P for three cases of xg . Figure 2 shows the Fermi
functions, defined as No/gx versus the binding energies (in au-s) of the self consistent AA levels for four
cases of optical thickness together with the LTE case. We can see that curve IV, corresponding to the
case when the radiating ion is one Rosseland mean length away from the edge of the slab, practically
coincides with the LTE curve, even when the photon confinement factors are not 1 for all photon
energies. Figures 3 and 4 compare the LTE Fermi functions with those calculated in the OLC
approximation and with the full non-LTE rate equations.

The calculated opacities for praseodymium are shown on Figs. 5, 6 and 7 for xg =0, 10* and 102,
respectively. In each figure we compare the LTE opacities with that of the full non-LTE calculations and
also with the LTE calculations using the equivalent temperatures of Table I. For the non-LTE
calculations the distribution of the DCA sates are computed with the aid of the equivalent LTE
temperatures and Fermi level . The number of DCA states which contribute significantly to the opacities
can be quite numerous, for example the opacity in Fig. 6 was obtained using 144 DCA configurations
distributed over 12 different degrees of ionization. It is out of the scope of this paper to discuss further
details of the DCA states and such details of the opacity calculations as line profiles, bremsstrahlung and
photoionization. For those the reader is referred to Refs. 4, 6, 8, and 15 and references quoted there.
Here we concentrate only on the non-LTE AA level populations. The calculated opacities for the
germanium case are shown in Figs. 8,9, 10 and 11. Figures 8, 9, and 10 are analogous to those of Figs.
5,6,and 7. In Fig. 11 we compare the non-LTE opacities with xz =10 and 107 with that of an earfier
calculation where the non-LTE AA populations were obtained by the radiation transport code LASNEX .
Since the LASNEX code uses a somewhat simple atomic physics package, the calculations based on
LASNEX based populations are not self-consistent, thus the apparent differences are not surprising. It
shouid be noted that the LASNEX populations were obtained for the optically thin case (xg =0) .
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Finally, in Fig. 12 we investigate the effect of the presence or absence of the Auger matrix elements
for one case of the praseodymium set. It is evident that in the absence of the Auger transitions the

occupancies of the upper levels are depleted, thus reducing the photoabsorption at low photon energies,
as shown in Fig.13.

Discussion.

The purpose of this paper was to present a somewhat rudimentary model for estimating the non-LTE
effects on photoabsorption in laboratory plasmas. These effects may be quite important in laser produced
plasmas. Although some experimental works have been done to measure LTE opacities of hot plasmas,
the author is not aware of experimental works concentrating on non-LTE effects. Neither is clear to the
author at this point how to design meaningful experiments which clearly distinguishes between the LTE
and non-LTE state of the plasma. Hopefully, this will come in the future.
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Table I. Equivaient LTE temperatures, ionization sates and Fermi levels.
1. Pr(Z=59) at KT=1keV and .1g/cc. Lx=1.3619 cm.
XR kT.(KeV) N, -wkT “Ueg/kTeq

0.0000  0.20313 28.81 9.6756 7.3283
0.0001 0.44531 40.93 9.3293 8.1022

0.01 0.84375 49.01 9.1515 8.9023
1. 1. 50.70 9.1178 9.1178
LTE l. 50.77 9.1178

2. Ge(Z=32) at kT=500 eV 0.01g/cc. Lx=46.87 cm.

0.0000  0.11523 19.357 10.669 8.4899
0.0001 0.15234 21.924 10.546 8.8217
0.01 0.42188 29.126 10.265 10.007
LTE 0.5 29.745 10.244
LASNEX 23.377 10.482
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Figure Captions.

Fig. 1. Photon confinement factors of praseodymium versus photon energy at kT=1KeV, 0.1g/cc density
with xzg =107 (1), 102 (II) and xg =1 (III).

Fig. 2. Fermi functions of praseodymium at kT=1KeV and at 0.1g/cc density. The curves marked as (I} ,
(I1), (IIT) and (IV) correspond to xg =0, 10, 10%and 1 together with the LTE case, respectively.

Fig. 3. Comparison of the OLC and full non-LTE Fermi functions with the LTE case of praseodymium
at kT=1KeV and at 0.1g/cc density with xg=0.

Fig. 4 Same as Fig. 3 with xg= 10™

Fig. 5. Calculated opacities in cm™ units of praseodymium at kT=1KeV and at 0.1g/cc density with
xg = 0. Full curve - LTE, long dashed - full non-LTE based on the rate equations, short dashed
LTE with the equivalent LTE temperature of 0.20313 KeV from Table L

Fig. 6. Same as Fig. 5 with xg= 10~

Fig. 7. Same as Fig. 5 with xg = 102

Fig. 8. Calculated opacities in cm™ units of germanium at kT=0.5 KeV and at 0.01g/cc density with
xr = 0. Full curve - LTE, long dashed - full non-LTE based on the rate equations, short dashed
LTE with the equivalent LTE temperature of 0.11523 KeV from Table L.

Fig. 9. Same as Fig. 8 with xg= 10,

Fig. 10. Same as Fig. 8 with xg= 10,

Fig. 11. Comparison of calculated opacities of germanium at kT=0.5 KeV and at 0.01g/cc density with
different xg -s with LASNEX prediction. Full curve - xe = 10™. long dashed - xg = 10, short
dashed - LASNEX.

Fig. 12. Fermi functions of praseodymium at kT=1KeV and at 0.1g/cc density with xg = 10 with and
without the Auger matrix elements in the rate equations.

Fig. 13. Opacitiy of praseodymium at kT=1KeV and at 0.1g/cc density with xg = 10, with and without
the Auger matrix elements in the rate equations, full and dashed curves, respectively.
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Fig. 1. Photon confinement factors of praseodymium versus photon energy at kT=1KeV, 0.1g/cc density
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1.00E+01

1.00E+004

L3

1.00E-01+

w 1.00E-024

1.00E-034

14

1.00E-04 -

1.00E-05 $ 3 ——
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04

AA binding energy(au)

Fig. 3. Comparison of the OLC and full non-LTE Fermi functions with the LTE case of praseodymium
at kT=1KeV and at 0.1g/cc density with xg = 0.
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Fig. 5. Calculated opacities in cm™ units of praseodymium at kT=1KeV and at 0.1g/cc density with
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Fig. 7. Same as Fig. 5 with xg =102,
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Fig. 9. Same as Fig. 8 with xg = 107,
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Fig. 10. Same as Fig. 8 with xg= 1072,
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Fig. 11. Comparison of calculated opacities of germanium at kT=0.5 KeV and at 0.01g/cc density with
different xg -s with LASNEX prediction. Full curve - LASNEX, long dashed - xg = 10, short
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without the Auger matrix elements in the rate equations.
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the Auger matrix elements in the rate equations, full and dashed curves, respectively.






